
Technical Report

CMU/SEI-89-TR-026
ESD-TR-89-034

CASE Planning
and the Software Process

Watts S. Humphrey

May 1989

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
CASE Planning and the Software Process

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute,Carnegie Mellon
University,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
http://www.sei.cmu.edu/pub/documents/89.reports/pdf/tr26.89.pdf

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report
(SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Technical Report
CMU/SEI-89-TR-026

ESD-TR-89-034
May 1989

CASE Planning
and the Software Process

AB
Watts S. Humphrey

Software Process Program

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

(signature on file)

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright

©

 1989 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.as-
set.com/sei.html / e-mail: webmaster@www.asset.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of
Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. B

Table of Contents

1. Introduction 1

2. Software Process Maturity 3

3. Why CASE Is Needed 7

4. CASE Planning Guidelines 9
4.1. Guideline 1 - If your process is chaotic, get it under control before 9

attempting to install a CASE system.
4.2. Guideline 2 - Develop your process before or during CASE 9

installation, but not after.
4.3. Guideline 3 - System conversion is critical, but converting the people 10

will be the hardest job of all.
4.4. Guideline 4 - Recognize that a CASE installation is never completed. 10
4.5. Guideline 5 - Don’t forget to think! 11

5. Planning and Installing CASE Systems 13
5.1. Developing the Economic Justification 14
5.2. Economic Justification - Special Considerations 15
5.3. Installing CASE Systems 16

6. Designing with CASE 17
6.1. People Considerations with CASE 18
6.2. Software Teams and CASE 19
6.3. The CASE Bureaucracy 19

7. Conclusion 21

Acknowledgements 23

References 25

CMU/SEI-89-TR-26 i

ii CMU/SEI-89-TR-26

List of Figures

Figure 2-1: Software Process Maturity Model 4

CMU/SEI-89-TR-26 iii

CASE Planning
and the Software Process

Abstract: Automating a software process both magnifies its strengths and accen-
tuates its weaknesses. Automation can make an effective process more effective,
but it can make a chaotic process even worse—and at considerable expense.
Anyone who buys expensive tools to solve an ill-defined problem is likely to be
disappointed. Unless procuring such tools is part of a thoughtful software process
improvement plan, the purchase could be an expensive mistake.

This report discusses software process maturity and its relationship to planning
and installing computer-aided software engineering (CASE) systems. While proc-
ess is not a magic answer (there isn’t one), the key issues are discussed from a
process perspective, and guidelines are given for avoiding the most common pit-
falls. Since CASE systems can involve significant investment, an economic justifi-
cation may be necessary. The relevant financial considerations are therefore dis-
cussed, and some basic steps for producing such justifications are outlined.
Finally, some key considerations for introducing and using CASE systems are dis-
cussed.

1. Introduction

The reason we use computer-aided software engineering (CASE) systems to automate the
software process is to improve the quality and productivity of our work. When we can
reduce a task to a routine procedure and mechanize it, we both save labor and eliminate a
source of human error. The latter, it turns out, is the most effective way to improve produc-
tivity: greater software productivity improvements come from eliminating mistakes than from
performing tasks more efficiently [HUM89b]. While better tools and procedures cannot re-
place creative designers, poor ones can frustrate and impede them.

To do a consistently effective job on a complex task, we need to consciously understand
what we are doing. While some people are so talented that they unconsciously do superb
work, an intuitive process is more risky with larger tasks and multi-person teams. A more
orderly focus on process definition and improvement is then advisable.

For a complex process to be understood, it must be relatively stable, not subject to wild
fluctuation. Deming refers to this as statistical control [DEM82]. When a process is under
statistical control, repeating the work in roughly the same way will produce roughly the same
result. Then, to get consistently better results, we must improve the process. Sustained
improvement is possible only if the process is under statistical control. Thus, the first man-
agement challenge is to make the software process reasonably stable and effective. As
Stenning says, "the role of an environment is to support effective use of an effective process
[STE87]." After the process has become stable and is reasonably effective, we can con-
sider automation to improve its efficiency.

CMU/SEI-89-TR-26 1

Before proceeding further, it is necessary to define what I mean by CASE. One published
definition says that "computer-aided software engineering (CASE) is the application of auto-
mated technologies to the software engineering procedures" [CAS86]. This definition en-
compasses the entire range from individual task-oriented tools to fully integrated operational
software environments. My discussion in this paper addresses the latter: planning and in-
stalling a comprehensive software environment. Such an environment should include a set
of compatible tools, a common database, task management facilities, and provisions for
configuration control. When I use the term "CASE system" in this paper, I am referring to
this type of comprehensive support environment.

While some CASE systems presume design and implementation methodologies, others pro-
vide more flexibility—and consequently less guidance. As CASE systems become more
sophisticated, they are necessarily more closely involved with the practitioners’ personal
working practices. As a result, common disciplines and methods become necessary, along
with common procedures, conventions, standards, interfaces, and measures. If an organi-
zation has not already established such a common working framework, the installation of a
CASE system can be traumatic. Even though a common framework is a key aspect of a
mature software process, the constraints could easily seem to result from the CASE system
itself. Such apparent sharp reductions in the freedom and flexibility of the working profes-
sionals can cause resentment and resistance unless the system is carefully planned and
introduced.

This paper also discusses CASE systems in a somewhat idealized sense. While the full
range of capabilities is not yet entirely clear, it is likely that CASE systems will evolve in
much the same way as many of the other system facilities common to our field. A large-
scale database system, for example, provides a basic framework and a set of facilities. The
users then decide how to use these capabilities. They must define the data types to be
handled, their precise formats and relationships, the desired outputs and their formats, and
the operational and control procedures. The design of the database system imposes con-
straints on many of these decisions, but the users generally have considerable flexibility in
their precise use.

In the comprehensive CASE systems of the future, the situation should be similar: a wide
range of basic capabilities will be provided, but the users will have to select the systems
which most closely meet their needs and then tailor the specific protocols, formats, proce-
dures, and methods to their precise tasks. For relatively standardized uses, it is also likely
that sets of "canned" facilities will be provided so that less demanding users could accept
these built-in choices rather than tailor their own. This approach, however, also poses a
serious danger to the uninformed: the standardized CASE system facilities may not fit the
user’s intended need. This is why, at least at this early stage in CASE systems develop-
ment, uninformed users must be doubly careful. They should first decide on the methods
that best fit their needs and only then select a CASE system to support these methods.

2 CMU/SEI-89-TR-26

2. Software Process Maturity

In early 1987, the Software Engineering Institute (SEI) at Carnegie Mellon University
launched a program dedicated to working on the software process. The objective was to
help software organizations to improve their software capabilities.

The initial work of the program was based on a request from the U. S. Air Force for a meth-
od to help identify the most capable software suppliers. SEI staff developed such a method,
which has been successfully used on a trial basis by the Army, Navy, and Air Force to assist
in their software source selections [HUM87b]. Additional work is underway to refine the
method and make it more broadly available to U. S. government agencies.

The focus on software process is based on the premises that (1) the process of producing
and evolving software products can be defined, managed, measured, and progressively im-
proved and (2) the quality of a software product is largely governed by the quality of the
process used to create, repair, and improve it.

The software process is the set of activities, methods, and practices which guide people in
the production of software. An effective process must consider the required tasks, the tools
and methods, and the software developers’ skills, training, and motivation.

Successful software work requires capable and motivated technical people, knowledge of
the ultimate application environment, and detailed understanding of the end user’s needs
[CUR88]. These alone, however, are not enough: the key missing ingredient, generally, is
effective software process management. Software process management is the application
of process engineering concepts, techniques, and practices to monitor, control, and improve
the software process. As software organizations grow larger and their projects become
more complex, process management becomes progressively more important. In fact, in-
attention to this one topic causes many otherwise capable software groups to be ineffective.

To address software process issues, the SEI developed a process maturity model and a
related software process assessment instrument. These are the basic elements of our
methods for examining and improving the software process [HUM87a]. Using these meth-
ods, an organization’s software engineering capability can be characterized with the aid of
the software process maturity model. By using the SEI method, organizations can deter-
mine the priority actions required for improving their software capability.

As shown in Figure 2-1, this model consists of five maturity levels and the key activities
required at each level. These maturity levels have been selected because they:

• Reasonably represent the historical improvement phases of actual software or-
ganizations.

• Represent a measure of improvement that can realistically be achieved from
the prior level.

• Suggest interim improvement goals and progress measures.

• Make obvious a set of immediate improvement priorities once an organization’s
status in this framework is known.

CMU/SEI-89-TR-26 3

Figure 2-1: Software Process Maturity Model

4 CMU/SEI-89-TR-26

At the initial level (level 1), an organization can be characterized as having an ad hoc, or
possibly chaotic, process. Typically, the organization operates without formalized proce-
dures, cost estimates, or project plans. Even if formal project control procedures exist, there
are inadequate management mechanisms to ensure they are followed. Tools are not well
integrated with the process, nor are they uniformly applied. Change control is rarely ade-
quate, and senior management is not exposed to or does not understand the key software
problems and issues. When projects do succeed, it is generally due to the heroic efforts of
a dedicated team rather than the capability of the organization.

An organization at the repeatable level (level 2) has established basic project controls: proj-
ect planning, management oversight, software quality assurance, and change control. The
strength of the organization stems from its experience at doing the same kind of work many
times, and it generally does reasonably well at meeting its schedule and cost commitments.
Such organizations, however, face major risks when presented with new challenges. They
also have frequent quality problems and generally lack an orderly framework for process
improvement.

At the defined level (level 3), the organization has laid the foundation for examining the proc-
ess and deciding how to improve it. The keys to moving from the repeatable level to the
defined level are to establish a software engineering process group (SEPG), to establish a
software process architecture that defines the key process activities, to review the adequacy
of the training program, and to introduce a family of software engineering methods and tech-
nologies. Although all these issues could usefully be addressed at level 2 or even at level 1,
special focus on them is required at this point to permit further progress to level 4.

The managed level (level 4) builds on the foundation established at the defined level. When
the process is defined, it can be examined and improved, but there is little data to measure
effectiveness. Thus, to advance to the managed level, an organization needs to establish a
minimum set of measurements for the quality and productivity parameters of each key task.
The organization also needs a process database with resources to manage and maintain it,
to analyze the data, and to advise project members on its meaning and use. This data is
useful not only for managing the process, but also for justifying the necessary investments in
training, staffing, and CASE systems.

Two requirements are fundamental to advance from the managed to the optimizing level
(level 5): data gathering should be automated, and management should give highest priority
to process analysis and improvement. At the optimizing level, the organization has the
means to identify the weakest process elements and strengthen them; data are available to
justify applying technology to the most critical tasks; and numerical evidence is available on
process effectiveness. The key additional activities at the optimizing level are rigorous
defect cause analysis and defect prevention, which are so important because they provide a
routine mechanism for maintaining focus on process improvement. When each key task is
completed, the people who were involved conduct a brief postmortem to determine what
went wrong, what should be fixed, and what could be improved. This provides the organi-
zation with the essential data for making steady process improvements.

CMU/SEI-89-TR-26 5

While there are many aspects to the transition from one maturity level to another, the basic
objective is to achieve a controlled and measured process as the foundation for continued
improvement.

This maturity framework has been used as the basis for an assessment program conducted
by the SEI to determine the state of the software process in United States software organi-
zations. From this work, it appears that approximately 84% of the organizations are at level
1, and only about 14% are at level 2 [HUM89a]. It is thus likely that most organizations
considering the installation of CASE systems will be at level 1, the least mature level of
software process management. Before addressing the key issues these organizations are
likely to face, I will discuss the reasons for automating the software process.

6 CMU/SEI-89-TR-26

3. Why CASE Is Needed

At present, software development is a human-intensive process with all the limitations this
implies. For example, people can do things only so fast. We accept the four-minute mile as
near the limit of human capability and see the three-minute mile as beyond human aspira-
tion. Our intellectual capabilities are also limited. Airline pilots, for example, can only focus
on a limited number of actions at once and their performance degrades with fatigue. There
are similar limits to the quality and production of software developers, but they are not as
clear. While human capabilities do seem to improve with time, these improvements are only
gradual. Clearly, to make major improvement, our hopes must increasingly rest on some
new conceptual view of our tasks or the use of more powerful tools.

While we can and should continue our search for better concepts and methods, consistent
and sustained software process improvements must ultimately come from technology. Im-
proved tools and methods have been helpful throughout the history of software; but once the
software process reaches level 5 maturity (optimizing), we will be in a far better position to
understand where and how technology can help.

In advancing from the level 1 (chaotic) process, we can make major improvements by
simply turning a crowd of programmers into a coordinated team of professionals. Perlis put
it best in 1968 when he said, "We kid ourselves if we believe that software systems can only
be designed and built by a small number of people. If we adopt that view this subject will
remain precisely as it is today, and will ultimately die. We must learn how to build software
systems with hundreds, possibly thousands of people [PER68]." This is the challenge faced
by immature software organizations: how to plan and coordinate the creative work of their
professionals so they support rather than interfere with each other.

Software process management provides a framework for progressively improving the order-
liness of our work. By moving from the initial (level 1) to the repeatable (level 2) and then to
the defined (level 3) process, we establish the commitment framework needed to coordinate
large operations. By using a structured, managed, and planned process, our professionals
better understand their roles and their interrelationships. The defined software process then
facilitates more rational reactions to the surprises and challenges of our work.

Once orderly performance is achieved, improvement continues but only in increments. At
some point, the professionals are using the process about as effectively as they can; yet we
will still need further quality and productivity improvements. At this point, what additional
steps can we take, and what limitations will we ultimately face?

While automation of our current process may help, automation alone is unlikely to get us
very far. We must couple automation with improved concepts for defining and coordinating
our work and for designing and validating our work products. Through the power of auto-
mated environments, we will better relate to and capitalize on the work of others. The need
is for better characterizations of software objects, better processes for controlling and relat-
ing them, and more powerful ways to access and manipulate them. This combination of

CMU/SEI-89-TR-26 7

method, process, and automation will, hopefully, enable software professionals to start down
the same path that has fueled four centuries of scientific progress. While software reuse
has long been more a hope than a promise, the greatest opportunity for dramatic produc-
tivity and quality improvement is likely to be through improved ways to build new software on
the progressively richer foundation of previously produced products. We will then, to
paraphrase Isaac Newton, build our products on the achievements of our predecessors.
Making this dream a reality will require a creative combination of method, process, and tech-
nology.

There is also the potential for significantly improving software process support. By making
our tools more consistent and integrating them in a common CASE system, we will move
beyond task support to support of the full life cycle. As CASE systems grow more sophis-
ticated, we can expect substantial improvement in their ability to support common under-
standing of management and technical plans and in their ability to guide the execution of
individual tasks so they each better relate to the total job. Any large software project is
performing a complex process, and it is often difficult to know which steps are most appro-
priate at any point. Data gathering and analysis also require support in order to be more
accurate, timely, and economical. While automated support for these activities will come
only gradually, organizations should take early steps to develop a software process support
strategy. When this is coupled with a concerted effort to improve the process maturity to
level 3 or better, the organization will have a sound framework for orderly and steady im-
provement.

8 CMU/SEI-89-TR-26

4. CASE Planning Guidelines

While it is risky to propose universal guidelines at this early stage in CASE technology de-
velopment, the following five appear to be generally applicable. Clearly, with further experi-
ence we will learn a great deal more. While I believe these CASE planning guidelines will
be reasonably durable, they are based on limited experience. They must, therefore, be
reexamined as new data becomes available.

4.1. Guideline 1 - If your process is chaotic, get it under control
before attempting to install a CASE system.

A level 1 organization must get its software process under control before it attempts to install
a sophisticated CASE system. In short, its first priority is to reach level 2. To be fully effec-
tive, CASE systems must generally enforce standard policies and procedures on their users.
If the systems are used with an immature process, the environment will merely become
another bureaucracy, only an unavoidable one. The saving grace of most immature organi-
zations is that their poor management system permits their ineffective process to be circum-
vented by their professionals. The truly unworkable steps have been skillfully evaded, thus
permitting the professionals to produce in spite of the system. When a CASE system en-
forces an unworkable process, it generally brings the level 1 organization to its knees.

It is possible to use CASE systems as collections of individual tools. Although this is an
expensive way to obtain compilers and editors, it can be a reasonable step toward
standardizing on a single tool set in preparation for later support improvements. For any
more sophisticated use, however, the most important single rule is: if your process is
chaotic, get it under control before attempting to install a CASE system.

4.2. Guideline 2 - Develop your process before or during CASE
installation, but not after.

Many organizations that work with CASE systems have barely reached level 2 or are strug-
gling to get there. Thus, they have not made much progress in defining their process. The
first task such groups generally formalize is configuration management, and some groups
may even establish strong procedures for controlling requirements. These are appropriate
processes to consider for initial trial implementation with a CASE system.

Beyond this, the organization should establish a full-time group of experienced software de-
velopment professionals to work on process improvement. This group should either include
or work closely with the group responsible for planning and supporting CASE implemen-
tation. These two groups, the software engineering process group (SEPG) and the tech-
nology focal point, then form the core for continued software process development and
automation. If such dedicated groups are not established, the process will likely stagnate

CMU/SEI-89-TR-26 9

and the CASE system will cease to evolve in step with the organization’s needs and capabil-
ities. When no one is assigned to work on process development, improvement is
unlikely—after all, the process can’t improve itself.

4.3. Guideline 3 - System conversion is critical, but converting
the people will be the hardest job of all.

While there are many facets to the "people issue," training is one of the most important; and
it is most often overlooked. In fact, training is the most common single weakness of level 2
organizations. Professional programmers often will not accept and may not even be able to
use advanced tools effectively unless they are adequately trained.

Training is also very expensive, and there are many different groups that each have their
unique training needs. In one organization, just the tool training for a 30-person program-
ming shop was $162,000, and this did not include the required instructional hardware and
software. In another case, per-tool training costs were projected as $1,507 per person, so
each professional’s training cost for a simple six-tool CASE system was $9,042 [HUG88].
Beyond this, we must consider training in languages, design methods, inspections, and test-
ing, to name just a few of the topics. Training is likely to be very expensive, but not nearly
as expensive as not training.

4.4. Guideline 4 - Recognize that a CASE installation is never
completed.

The people, their experience level, the available technology, process methods, the business
environment, and project needs all change with time. The environmental support system
must thus also change and evolve. While it is essential to maintain reasonable environ-
mental stability, people’s capabilities change and new problems arise which require atten-
tion. It is therefore essential to maintain continuing resources to plan, support, and control
CASE evolution. This requires a permanent staff, a system for reporting and tracking prob-
lems, mechanisms to periodically assess the users’ needs, and the capability to test and
prototype changes before putting them into general use.

As pointed out in guideline #2, a technology focal point is needed to provide assistance,
interface with the vendors, and lead the CASE planning and installation efforts. These
tasks, however, require a delicate balance between the roles of champion, advocate, and
manager. The champion sells the organization on the need for CASE. The advocate under-
stands the organization’s needs and represents them to the vendors. The manager devel-
ops the plans, musters the resources, and directs the implementation. All this, of course,
implies an orderly, planned approach. That is another reason for guideline #1: if the
organization’s software process is chaotic, its CASE planning and installation efforts will like-
ly be chaotic as well.

10 CMU/SEI-89-TR-26

4.5. Guideline 5 - Don’t forget to think!

With inappropriate automation, it is easy to induce online frenzy, abstraction distraction, or
object hypnosis. The introduction of powerful tools carries the risk of damage through
misuse. For example, powerful tools make mindless action so easy that enormous heaps of
code can be produced without much thought. Although it is generally possible to use a
CASE system as an aid to a manual architectural design, both managers and implementors
get impatient waiting for design completion and may prematurely rush into implementation.
When the environment’s powerful facilities have been oversold, management may believe it
is capable of far more than it can possibly provide. Good designs start with functional and
structural concepts, and no machine can produce these. When the developers rapidly pro-
duce mountains of detail, it is easy to believe that the environment has provided an orderly
framework. Without clear concepts, this frenzied rush to implement can easily produce ab-
straction nestings with dozens of levels or case statements with thousands of choices.
When such absurdities pervade a system, it can become irreparable even with the best
available tools.

The basic guideline is: select your design methods with care, and not just because they
came with the tool; then insist on a thorough high-level architectural design. This will pro-
vide a solid foundation for everything that follows.

CMU/SEI-89-TR-26 11

12 CMU/SEI-89-TR-26

5. Planning and Installing CASE Systems

Although a full treatment of CASE planning and installation is beyond the scope of this re-
port, a few general considerations are worth special attention.

First, just as with a product effort, it is advisable to start with an orderly study of the require-
ments. The requirements clearly state management’s objectives for the CASE system and
define the critical functions. These functions should be prioritized, however, or they will like-
ly become so voluminous as to provide little guidance. After all, if everything is needed,
anything will fall within the intended scope. Since not all desired functions can be provided
at once, all-encompassing requirements merely leave the task of selecting priorities to the
implementors.

One approach is to establish three priorities: A - essential for the first installation; B - re-
quired as an early enhancement; and C - desirable in the future. It is wise to get both tech-
nical and project management agreement with these functional priorities. As the planning
becomes more specific, installation and conversion commitments will be facilitated if the A,
B, and C priorities are known for each product area. If no product area is willing to convert
to and use the CASE system at an early date, the plan should be reevaluated and the A
priority items reestablished.

Over time, comprehensive CASE systems are likely to be the single most expensive capital
investment a software organization makes. Although it is not clear what such systems will
cost, I believe that ultimately CASE system costs will exceed those of the organization’s
other software, computing systems, and terminals combined.

Most software professionals can get approval to purchase a software package for a few
hundred dollars. While you may have to answer some financial questions, a little arm
waving and technical mumbo jumbo will generally suffice. When the costs mount to a few
thousand dollars, a manager’s approval is required; but, again, as long as he or she agrees
to support you, arm waving will generally win the day. When the costs rise much beyond
this, hard data will be required. The question then becomes: what data and how can it be
presented to win approval?

There are several arguments for getting large expenditures approved in dollar-conscious in-
dustrial organizations:

1. A recognized outside expert provides testimony. This is not a very reliable
method and will not alone suffice when the costs reach a million dollars or
more. Since it will be some time before CASE system costs reach that finan-
cial stratosphere, the expert route will likely be adequate for the near term.

2. The leading competitor has one. This is almost foolproof. Unfortunately, it
requires a competitor who is willing and able to be first. At least for that com-
petitor, this returns us to the previously unsolved problem.

3. The contract requires it. Here, the odds favor agreement to get a CASE sys-
tem. If history with some early software tools is any guide, however, this sys-

CMU/SEI-89-TR-26 13

tem will be provided as GFE (government furnished equipment) and will not be
ready at contract start time. Unfortunately, this has historically meant that a
reliable and fully functional CASE system will not even be ready at contract
completion.

4. There is economic justification. Developing the economic justification requires
work, but it can be done. Some suggestions on how to do this are given in the
next section.

5.1. Developing the Economic Justification

Although any reasonably conducted financial study will likely produce the required results,
significant work is required. The following steps are not proposed as the only or even the
best way to produce such a justification; however, they have been used with some success.

1. Develop a task map for the technology currently in use and another task map
for that which is planned.

2. Identify the current resource expenditure profiles for each task. These num-
bers must be reviewed and accepted by the leading project managers.

3. Assemble a team of experts to determine the resource impact of the new
CASE system and its associated support tools and methods. This team
should also consider the likely quality consequences at each process stage
and should use the same level of detail as the task maps. When completed,
this information is also reviewed with the project managers and their leading
technical people.

4. Review each project’s migration plan to determine the accrual rate of the
savings. Don’t forget to include a learning curve as well as the anticipated
product quality benefits in the test, installation, and repair phases.

5. Get each project’s commitment to this savings schedule, together with its
agreement to adjust project plans accordingly. This will not be easy, but it is
the only way to convince the finance people that this investment is worthwhile.

6. Establish a new schedule of estimating factors for project planning.

7. Estimate the planning, training, installation, conversion, and support costs.

8. Construct a composite savings schedule for the organization as a whole. If
the information is available, reference to other organizations’ experiences can
add considerable credibility.

9. Get competent financial advice on the methods used and the results an-
ticipated.

10. With this justification, request management approval for the plan.

While most of these steps are relatively straightforward, the task map in step 1 is not. Es-
sentially, it consists of a structured picture of the software process with identification of each
key task and the tools and methods used in performing it. The work is analyzed in sufficient
detail to identify the specific costs associated with each of these key tasks and to determine
the anticipated costs with the new CASE system. Because some of the most significant
savings are likely to result from improved quality and the resulting reduced testing and repair
costs, it is also essential to estimate the improved quality consequences for each process
task.

14 CMU/SEI-89-TR-26

The development of an economic justification is impossible without the support of project
managers. Even with their support, it will be hard to sell cost-conscious senior managers on
a major investment that does not directly increase revenue. With enough support and per-
sistence, however, the case can be made.

5.2. Economic Justification - Special Considerations

In generating an economic justification, it is helpful to keep these special considerations in
mind:

1. Level 1 organizations don’t have the data to make an economic justification.
Level 2 organizations generally have to make an extensive study to produce a
rudimentary justification. Level 3 groups have the cost data but need to con-
duct a special study to estimate the quality factors. Level 4 and 5 groups have
the needed data readily at hand.

2. In projecting savings, don’t get too far out on a technological limb; focus on
practical and achievable improvements.

3. Involve the financial people. A professionally prepared financial story takes a
lot of work, but it will be far more convincing to the intended audience than a
technical presentation.

4. Do the work in detail. Though the detail will not be presented, bring a well-
structured summary of the results as backup. It is rarely needed, but a thick
pile of backup material builds the presenter’s confidence and deters the most
detail-minded financial executive.

5. Approval is unlikely unless you have line management’s agreement and
savings commitments from the project managers.

6. Remember that there is no way to absolutely prove the economic value of a
CASE system. This, however, is generally true of any other capital invest-
ment. Although this is not a useful arguing point, it is worth remembering dur-
ing the financial debates. When the executives are convinced of the sound-
ness of your logic, they will not require absolute proof.

7. It takes time to do it right, but there is no shorter way.

One thing to remember: be very careful about promising dramatic early savings. There is
evidence that a fully automated CASE system, by enforcing a comprehensive design disci-
pline, will actually increase early costs [LEM88]. While these costs are the natural result of
enforcing an orderly and complete requirements and design process, the CASE system
could be blamed and the entire effort jeopardized. Since such cost increases generally
result from more complete early design work, the later benefits in reduced testing and im-
proved product quality could easily pay for the entire CASE installation.

The early costs are also likely to be inflated by the added time required for the professionals
to become familiar with the new system and the procedures and methods involved in its use.
This learning curve effect should be tracked with the early installations so that subsequent
users are better informed when making their plans.

CMU/SEI-89-TR-26 15

5.3. Installing CASE Systems

If the planning has been done properly and adequate training and support facilities are avail-
able, the actual installation and conversion to a CASE system should be relatively
straightforward. This does not mean that this phase is easy, however, because any change
in the working fabric of an organization is a major upheaval, and many surprises and prob-
lems will invariably occur. With adequate preparation, these problems can generally be
handled.

One possible exception is an attempt to convert an existing project to a new CASE system.
This is always difficult, but it should not even be attempted unless the project is at or very
near level 2. Such projects generally have larger staffs as well as major investments in
existing designs, test suites, and code. They should, therefore, treat claims for improved
quality and productivity with some skepticism and carefully balance the promised benefits
against the more certain costs and risks of a change.

On the other hand, if the project is near the beginning of a long development program or is
early in its maintenance phase, there may be sufficient reason for a change. The long-term
benefits of improved tracking, better design disciplines, and comprehensive change control
are often sufficiently attractive to warrant conversion. The key rule, however, is to always
keep one foot on solid ground. This requires extended dual system operation and success-
ful performance in slave mode before the first trial cut-over. This approach can be very
expensive and, in some cases, may not even be feasible. The costs of unanticipated failure
are so significant, however, that any precipitous cut-over would be foolhardy. Again, such
moves should be attempted only if the organization is at or very near level 2.

16 CMU/SEI-89-TR-26

6. Designing with CASE

Perhaps the most important design consideration with CASE systems is that so little is dif-
ferent: the old familiar design principles are still essential. The combination of an effective
process and a powerful CASE system can be enormously helpful, but it cannot do every-
thing. When the requirements are wrong, when the application is not understood, or when
the conceptual design is ill-founded, product results are invariably poor, regardless of the
process, tools, or methods used. Though a well-defined and managed process can help
identify these problems, it cannot prevent them.

A mature process can and should ensure that the proper time and resources are devoted to
requirements development, that application needs are thoroughly studied, and that ade-
quate design resources are invested early in the project. It can also ensure a competent
expert review of the design itself. When management then attends to the identified con-
cerns, a sound foundation for product development will likely result. Under these conditions,
an automated environment can be of greatest value.

With a less mature process, requirements resolution is typically ad hoc; little conscious at-
tention is paid to the design; and there is little provision for expert technical review. Often,
customer participation in some technically superficial design review is taken as sufficient
evidence that this early work has been done and that code production can begin. And often
the result is either a poorly designed product or an expensive and time-consuming remedial
design effort during test.

Generally these problems are not greatly affected by the introduction of CASE systems; but
the lack of a coherent and well thought out conceptual design can cause special problems.
Here, the combination of an immature process and an automated environment can create a
false sense of security. The problem is that the CASE system depends on the product’s
structural design for the partitioning of work between the subsystems, components, and
modules. When this system structure lacks coherence, the entire project organization and
its support system will be similarly flawed. If this problem is recognized in time and a
remedial design effort is launched, the CASE system can greatly assist in the recovery.
More often, however, these problems are not recognized until product integration; and then
it is hard to stop and rethink the design. More often, management will push ahead and try to
patch the problems as they arise. While this may produce something that actually works,
the underlying structural flaws will likely result in a system that is difficult to integrate, impos-
sibly slow, and a maintenance nightmare.

The problems of an incoherent design are always severe, and a CASE system can make
them worse. The apparently orderly work flow and the quiet efficiency of change manage-
ment and status reporting lull the management into believing the product really is well struc-
tured. This confusion of efficient method with sound concept can have painful conse-
quences. Designs may have multi-layered abstractions with a dozen or more levels or an
amoeba-like sea of functional objects with no coherent relationships. When such problems
pervade the fabric of a system, performance degradations of 1000 times or more are likely,

CMU/SEI-89-TR-26 17

and the resulting kludge may be more expensive to fix than scrapping the design and start-
ing over.

6.1. People Considerations with CASE

Process maturity can be viewed as an evolution in the way people work. At the lowest level
(level 1), we have a largely uncoordinated collection of individuals. Though they may occa-
sionally work together cooperatively, this is more incidental than a result of organization or
process. At the next level (level 2), we have collections of small professional teams who
work well as single groups but do not coordinate effectively, except on a largely personal
basis. Finally (at level 3 and above), we have larger scale organizational frameworks within
which many teams cooperatively interact and support each other. Process maturity is thus
not just a management issue but one of establishing the human environment for a large-
scale cooperative endeavor.

Perhaps the greatest single people issue is the need to build a common working ethic and
practice. It takes work to build close-knit teams, and many software people object to stan-
dard procedures. Enabling a crowd of individual programmers to become a coherent team
is a key result of moving from maturity level 1 to level 2. This evolution is a prerequisite to
the adoption of the common methods and tools of a CASE system. In spite of the most
elaborate preparation, if the professionals are not ready to accept the CASE system as a
common working framework, they will treat it as another constraint to be evaded. They have
painfully learned to publicly accept imposed policies and procedures and then to do
whatever is needed to get the job done. This is rarely in accord with the official process.
Without a thoughtful program to win the professionals’ allegiance, a CASE system instal-
lation can be an expensive blunder.

The current vague process definitions typical of most software organizations give the profes-
sionals considerable freedom. Stenning points out that "most of the processes used in the
software industry would be completely unworkable were it not for human ingenuity and
flexibility [STE87]." In implementing CASE systems, we must recognize that no one is smart
enough to define every precise detail of even relatively small parts of the software process.
We must be careful that the imposition of constraints and controls always leaves room for
exceptions and escapes. Strong facilities are needed for such items as protection, recovery,
change authorization, and promotion control; but even these will need management-
authorized escapes. Within these fundamental constraints, the system should permit wide
latitude on what tasks are performed, when, and how. As process maturity improves, the
professionals better understand how each task should generally be performed and are bet-
ter able to judge when and why to use alternatives or exceptions.

18 CMU/SEI-89-TR-26

6.2. Software Teams and CASE

When a small, coherent team embraces a common process and the CASE system which
supports it, powerful results can be expected. When the team retains its structure and has
control of its own pace for adopting new practices, its members will likely retain their
cohesiveness even through the installation of a new support system. Such teams are most
likely to make a successful CASE installation.

An important reason for their success is that the CASE system installation legitimizes their
efforts to define and improve their working process. We readily accept a football team’s
need to plan and practice its plays, but somehow the similar needs of programming teams
are not recognized. By making this work part of the CASE system migration effort, it be-
comes more acceptable. Such process work can actually improve a team’s performance
without the installation or use of a single tool. By ensuring that the entire team fully under-
stands the methods that each member has found most effective, the performance of most
teams will improve significantly.

6.3. The CASE Bureaucracy

Even though it will not be apparent until some time after a CASE system has been installed,
there is an interesting converse to the acceptance problem. Over time, some professionals
will even believe that the CASE system can do no wrong. They will then accept what it
produces and blindly follow the steps and actions it prescribes. At that point, the CASE
system will have become another and more pervasive bureaucracy which can block rational
thought. Though the operation may seem more efficient, its procedures and methods will
gradually become less pertinent to current problems. The resulting petrified process can
then actually retard organizational improvement. Actions must be taken to ensure that the
professionals continue to "own" their own software process, or they will not evolve it in con-
cert with their needs and capabilities. This, of course, is the role of the level 5 optimizing
process: it provides the people with a mechanism to review and modify the process in accor-
dance with their current needs.

CMU/SEI-89-TR-26 19

20 CMU/SEI-89-TR-26

7. Conclusion

CASE systems hold enormous potential if properly used, but they can also be costly mis-
takes. When such systems are installed to solve vague and ill-defined problems, they will
be a serious disappointment and may even cause harm. After your organization has its
software process under control, however, you should certainly investigate CASE systems.

Once you decide to proceed, I suggest you consider the following initial steps [HUM89b]:

1. Assess your organization. Conduct an orderly study, determine the key prob-
lems, and initiate appropriate improvement actions.

2. Establish a software engineering process group (SEPG) to focus on and lead
process improvement. If no one is working on process development, improve-
ment is unlikely, for the process can’t improve itself.

3. Establish an automation focal point. This responsibility should be assigned to
someone who is part of or closely associated with the SEPG and is capable of
leading the CASE planning and implementation work. Though such an as-
signment may not be needed immediately, it will be appropriate as soon as the
organization approaches process maturity level 2; and it is absolutely essential
to initiating work on installing a CASE system.

4. Plan, manage, and track process improvement with the same discipline you
use to plan, manage, and track the projects.

CMU/SEI-89-TR-26 21

22 CMU/SEI-89-TR-26

Acknowledgements

In preparing this report, I have been fortunate in the quality and depth of advice and review I
have received. I am particularly indebted to Brett Bachman, Grady Booch, Anita Carleton,
Ken Dymond, Peter Feiler, Louise Hawthorne, Bob Kirkpatrick, Dave Kitson, Steve Masters,
Don O’Neil, Mark Paulk, Ron Radice, Tom Rappath, and Cindy Wise for their helpful com-
ments and suggestions. Linda Pesante has provided very professional editorial assistance,
for which I am also most grateful. Any errors, omissions, or misstatements are, of course,
entirely my responsibility.

CMU/SEI-89-TR-26 23

24 CMU/SEI-89-TR-26

References

[CAS86] Case, Albert F., Jr., Information Systems Development: Principles of Computer-
Aided Software Engineering. Englewood Cliffs, N.J.: Prentice-Hall, 1986.

[CUR88] Curtis, B., H. Krasner, and N. Iscoe, "A Field Study of the Software Design Process
for Large systems," Communications of the ACM, November 1988.

[DEM82] Deming, W. E., Out of the Crisis. Cambridge, Mass.: MIT Center of Advanced En-
gineering Study, 1982.

[HUG88] Hughes, A., "The Care and Fielding of a Software Development Environment,"
Transferring Software Engineering Tool Technology, S. Przybylinski and P. J. Fowler, Eds.,
IEEE Computer Society Press, November 1987.

[HUM87a] Humphrey, W. S., and D. H. Kitson: Preliminary Report on Conducting SEI-
Assisted Assessments of Software Engineering Capability, SEI Technical Report
CMU/SEI-87-TR-16, DTIC: ADA 183429, July 1987.

[HUM87b] Humphrey, W. S., and W. L. Sweet, A Method for Assessing the Software Engi-
neering Capability of Contractors, SEI Technical Report CMU/SEI-87-TR-23, DTIC: ADA
187230, September 1987.

[HUM89a] Humphrey, W. S., D. H. Kitson, and T. C. Kasse, The State of Software Engi-
neering Practice: A Preliminary Report, SEI Technical Report CMU/SEI-89-TR-1, DTIC:
ADA 206573, February 1989.

[HUM89b] Humphrey, W. S., Managing the Software Process. Reading, Mass.: Addison-
Wesley, 1989.

[LEM88] Lempp, P., "Productivity and Quality Gains Reported by Users of EPOS the Inte-
grated CASE Environment," Electro/88 Conference Record, Boston, Mass., May 10-12,
1988.

[PER68] Naur, P., and B. Randell, "Software Engineering," NATO Science Committee, Oc-
tober 1968.

[STE87] Stenning, V., "On the Role of an Environment," 9th International Conference on
Software Engineering, Monterey, Calif., March 30, 1987.

CMU/SEI-89-TR-26 25

26 CMU/SEI-89-TR-26

	Table of Contents
	List of Figures
	1. Introduction
	2. Software Process Maturity
	3. Why CASE Is Needed
	4. CASE Planning Guidelines
	5. Planning and Installing CASE Systems
	6. Designing with CASE
	7. Conclusion
	Acknowledgements
	References
	Table of Contents
	List of Figures
	1. Introduction
	2. Software Process Maturity
	3. Why CASE Is Needed
	4. CASE Planning Guidelines
	5. Planning and Installing CASE Systems
	6. Designing with CASE
	7. Conclusion
	Acknowledgements
	References

